[1]李宏宇,王旭刚,华思雨.多约束下距离加权最优滑模末制导律[J].弹道学报,2019,(01):50.[doi:10.12115/j.issn.1004-499X(2019)01-009]
 LI Hongyu,WANG Xugang,HUA Siyu.Range-to-go Weighted Optimal Sliding-mode Terminal-guidance-lawWith Multi-constraint[J].Journal Of Ballistics,2019,(01):50.[doi:10.12115/j.issn.1004-499X(2019)01-009]
点击复制

多约束下距离加权最优滑模末制导律()
分享到:

《弹道学报》[ISSN:1004-499x/CN:32-1343/TJ]

卷:
期数:
2019年01期
页码:
50
栏目:
出版日期:
2019-03-30

文章信息/Info

Title:
Range-to-go Weighted Optimal Sliding-mode Terminal-guidance-lawWith Multi-constraint
文章编号:
1004-499X(2019)01-0050-06
作者:
李宏宇王旭刚华思雨
南京理工大学 能源与动力工程学院,江苏 南京 210094
Author(s):
LI HongyuWANG XugangHUA Siyu
School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
滑模制导律 最优制导律 多约束 末制导 权函数
Keywords:
sliding mode guidance law optimal guidance law multiple-constraints terminal guidance weight function
分类号:
TJ765.3
DOI:
10.12115/j.issn.1004-499X(2019)01-009
文献标志码:
A
摘要:
为解决多约束下制导炮弹的精确制导问题,采用带有相对距离权函数的最优滑模末制导律,将权函数引入到最优制导律中,通过改变制导炮弹的运动轨迹、运动时间,进而增强制导精度。针对单权函数难以同时满足制导精度与导引头视线角、过载等约束的问题,采用不同权函数的分段加权方法解决加权最优末制导引起的制导问题。结合滑模变结构控制理论,设计分段加权最优滑模末制导律,增强制导系统的抗干扰能力。仿真验证结果表明,该末制导律既能解决过载、导引头视线角、落角等多约束情况下的精确制导问题,同时又具有一定的鲁棒性。
Abstract:
To solve the problem of precise guidance of guided missile(GM)under multi-constraint,the optimal sliding mode guidance law with relative distance weight function was applied. The weight function was introduced to the optimal guidance law. The guidance precision can be improved by changing the motion trajectory and motion time of GM. The single weight function is difficult to satisfy the guidance accuracy,the constraint of line-of-sight angle of seeker and overload constraint. The piecewise weighting method of the function was applied to solve the guidance problem caused by weighted optimal guidance. Combined with the sliding mode variable-structure control theory,the segmented weighted optimal sliding-mode guidance law was designed to enhance the anti-interference ability of guidance system. The simulation result shows that the terminal guidance law can solve the problem of accurate guidance under multi-constraint conditions such as overload,seeker line-of-sight angle and falling angle,and it has certain robustness.

参考文献/References:

[1] 卜奎晨,刘莉. 制导炮弹发展趋势及其研究方向[J]. 系统工程与电子技术,2006,28(11):1709-1711.
BU Kuichen,LIU Li. Development trend and study direction of terminal guided pojectile[J]. Journal of Systems Engineering and Electronic,2006,28(11):1709-1711.(in Chinese)
[2]牟宇,程振轩,王江. 制导炮弹技术现状与发展方向[J]. 飞航导弹,2008(7):33-37.
MOU Yu,CHENG Zhenxuan,WANG Jiang. Present situation and development direction of guided projectile technology[J]. Aerodynamic Missile Journal,2008(7):33-37.(in Chinese)
[3]刘丹,祁载康. 限制导弹落角和落点的最优制导律[J]. 北京理工大学学报,2001,21(3):278-281.
LIU Dan,QI Zaikang. Optimal guidance law for limiting missile landing angle and landing point[J]. Journal of Beijing Institute of Technology,2001,21(3):278-281.(in Chinese)
[4]XU X Y,CAI Y L. Optimal guidance law and control of impact angle for the kinetic kill vehicle[J]. Journal of Aerospace Engineering,2011,225(9):1027-1036.
[5]RYOO C K,CHO H,TAHK M J. Optimal guidance laws with terminal impact angle constraint[J]. Journal of Guidance Control & Dynamics,2005,28(4):724-732.
[6]RYOO C K,CHO H,TAHK M J. Time-to-go weighted optimal guidance with impact angle constraints[J]. IEEE Transactions on Control Systems Technology,2006,14(3):483-492.
[7]PARK B G,KIM T H,TAHK M J. Range-to-go weighted optimal guidance with impact angle constraint and seeker’s look angle limits[J]. IEEE Transactions on Aerospace & Electronic Systems,2016,52(3):1241-1256.
[8]张一,张合新,范金锁,等. 带末端角约束的三维最优滑模制导律设计[J]. 科学技术与工程,2010,10(25):6177-6180.
ZHANG Yi,ZHANG Hexin,FAN Jinsuo,et al. Design of three-dimensional optimal sliding mode guidance law with end angle constraint[J]. Science Technology and Engineering,2010,10(25):6177-6180.(in Chinese)
[9]张合新,范金锁,吴坤,等. 基于二阶滑模的鲁棒最优末制导律设计[J]. 控制工程,2013,20(3):513-516.
ZHANG Hexin,FAN Jinsuo,WU Kun,et al. Robust optimal terminal guidance law design based on second-order sliding mode control[J]. Control Engineering of China,2013,20(3):513-516.(in Chinese)
[10]钱杏芳,林瑞雄,赵亚男.导弹飞行力学[M]. 北京:北京理工大学出版社,2013:81-102.
QIAN Xingfang,LIN Ruixiong,ZHAO Ya’nan. Missile flight mechanics[M]. Beijing:Beijing Institute of Technology Press,2013:81-102.(in Chinese)
[11]陈志豪. 大气层内拦截弹直接力/气动力复合控制研究[D]. 哈尔滨:哈尔滨工程大学,2013.
CHEN Zhihao. Research on combined control system for an atmospheric interceptor controlled by lateral/aerodynamic forces[D]. Harbin:Harbin Engineering University,2013.(in Chinese)
[12]胡寿松. 自动控制原理[M]. 北京:科学出版社,2013:524-540.
HU Shousong. Principle of automatic control[M]. Beijing:Science Press,2013:524-540.(in Chinese)
[13]PARK B G,KIM T H,TAHK M J. Optimal impact angle control guidance law considering the seeker’s field-of-view limits[J]. Journal of Aerospace Engineering,2013,227(8):1347-1364.
[14]CHEN Z,TANG S,GUO J. Three-dimensional optimal sliding mode guidance with impact angle constraint[C]//Proceeding of the 11th World Congress on Intelligent Control and Automation. Shenyang:IEEE,2014:4045-4049.
[15]SUN W M,ZHEN L,ZHENG Z Q. Three-dimensional optimal variable structure guidance law with multiple constraints in ground strike of hypersonic air-to-surface missiles[J]. Journal of National University of Defense Technology,2007,29(3):126-130.

相似文献/References:

[1]肖增博,雷虎民,叶继坤,等.一种用于弹道导弹助推段拦截的最优制导律[J].弹道学报,2011,(04):16.
 XIAO Zeng-bo,LEI Hu-min,YE Ji-kun,et al.An Optimal Guidance Law for Boost Phase Interception of Ballistic Missile[J].Journal Of Ballistics,2011,(01):16.

备注/Memo

备注/Memo:
收稿日期:2018-07-12
作者简介:李宏宇(1993- ),女,硕士研究生,研究方向为导航制导与控制。E-mail:631885554@qq.com。
通信作者:王旭刚(1979- ),男,副研究员,博士,研究方向为飞行动力学、制导与控制。E-mail:wxgnets@163.com。DOI:10.12115/j.issn.1004-499X(2019)01-009
更新日期/Last Update: 2019-03-10