[1]施红辉,周 栋,温俊生,等.基于ALE方法的弹性圆柱壳入水时的流固耦合模拟[J].弹道学报,2020,32(01):9-14.[doi:10.12115/j.issn.1004-499X(2020)01-002]
 SHI Honghui,ZHOU Dong,WEN Junsheng,et al.Fluid-solid Interaction Simulation of Elastic Cylindrical ShellPenetrating Water Based on the ALE Method[J].Journal Of Ballistics,2020,32(01):9-14.[doi:10.12115/j.issn.1004-499X(2020)01-002]
点击复制

基于ALE方法的弹性圆柱壳入水时的流固耦合模拟()
分享到:

《弹道学报》[ISSN:1004-499X/CN:32-1343/TJ]

卷:
32
期数:
2020年01期
页码:
9-14
栏目:
出版日期:
2020-03-31

文章信息/Info

Title:
Fluid-solid Interaction Simulation of Elastic Cylindrical ShellPenetrating Water Based on the ALE Method
文章编号:
1004-499X(2020)01-0009-06
作者:
施红辉周 栋温俊生贾会霞
浙江理工大学 机械与自动控制学院,杭州 310018
Author(s):
SHI HonghuiZHOU DongWEN JunshengJIA Huixia
Faculty of Mechanical Engineering & Automation,Zhejiang Sci-Tech University,Hangzhou 310018,China
关键词:
超空泡 圆柱壳 流固耦合 入水
Keywords:
supercavity cylindrical shell fluid-solid interaction water entry
分类号:
O352; O359
DOI:
10.12115/j.issn.1004-499X(2020)01-002
文献标志码:
A
摘要:
为了获得头型及材料弹性对圆柱壳入水过程中头部变形、压力分布、入水空泡形态及入水运动状态的影响,采用ALE方法,基于有限元软件ANSYS\LS-DYNA,对平头、120°锥角、90°锥角弹性圆柱壳的入水过程进行了数值模拟,对平头弹性圆柱实体和平头刚性圆柱壳进行计算,并对模拟结果进行对比。结果表明:入水过程中空泡直径随着锥角的增大而增大,锥角越大,圆柱壳上表面的变形越大,最大变形出现的时间越早:平头弹性圆柱壳在0.1 ms时出现最大变形0.84 mm,120°锥角弹性圆柱壳在0.3 ms时出现最大变形0.54 mm,90°锥角弹性圆柱壳在0.5 ms时出现最大变形0.43 mm; 下表面受到的压力越大,圆柱壳的速度衰减越快; 平头圆柱壳下表面的变形与振动频率大于上表面; 上表面的变形是由惯性引起的,下表面的变形是由流体冲击力引起的。
Abstract:
In order to obtain the influence of the head shape and material elasticity on the deformation,pressure distribution,cavity shape and motion state of cylindrical shell in the process of water entry,Arabic Lagrange Euler(ALE)method was used to simulate and analyze the water entry process of elastic cylindrical shell with flat head,120° cone angle and 90° cone angle based on the finite element software ANSYS\LS-DYNA. The simulation result of rigid cylindrical shell was compared with that of flat head projectile. The results show that the diameter of cavity increases with the increase of the cone angle. The larger the cone angle is,the larger the deformation of the top surface of cylindrical shell is,and the earlier the maximum deformation occur. The maximum deformation of flat elastic cylindrical shell is 0.84 mm at 0.1 ms,and the maximum deformation of elastic cylindrical shell with 120° cone angle is 0.54 mm at 0.3 ms,and the maximum deformation of elastic cylindrical shell with 90° cone angle is 0.43 mm at 0.5 ms. The greater the pressure on the bottom surface,the faster the velocity of cylindrical shell decays. The deformation and vibration frequency of the bottom surface of flat head cylindrical shell is higher than that of the top surface. The deformation of the top surface is caused by inertia,and the deformation of the bottom surface is caused by the impact force of the fluid.

参考文献/References:

[1] 易文俊,王中原,熊天红,等. 水下高速射弹超空泡减阻特性研究[J]. 弹道学报,2008,20(4):1-4.
YI Wenjun,WANG Zhongyuan,XIONG Tianhong,et al. Study on the characteristics of supercavitation drag reduction of underwater high-speed projectile[J]. Journal of Ballistics,2008,20(4):1-4.(in Chinese)
[2]尹莉,钱勤,罗宁,等. 结构撞水的流固耦合动力分析[J]. 华中科技大学学报,2006,23(2):5-8.
YIN Li,QIAN Qin,LUO Ning,et al. Dynamic analysis of fluid-structure interaction for water impact of structure[J]. Journal of Huazhong University of Science and Technology,2006,23(2):5-8.(in Chinese)
[3]Von KARMAN T. The impact on seaplane floats during landing:TN321[R]. [S.l.]:NACA,1929.
[4]WAGNER H. Uber stossuad gleitvorgange an der oberflache von flussigkeiten[J]. Zeitschrift fur Angwandte Mathematik und Mechanik,1932(12):193-215.
[5]AQUELET N,SOULI M. Fluid-structure coupling in a water-wedge impact problem[J]. Journal of Computational Physics,2004,199(1):205-220.
[6]KHAZRAIYAN N,GERAMI N D,DAMIRCHELI M. Numerical simulation of fluid-structure interaction and its application in impact of low-velocity projectiles with water surface[J]. Geoforum,2015,60(19):43-52.
[7]孙琦,周军,林鹏. 基于LS-DYNA的弹体撞水过程流固耦合动力分析[J]. 系统仿真学报,2010,22(6):1498-1501.SUN Qi,ZHOU Jun,LIN Peng. Dynamic analysis of fluid-structure interaction for water impact of projectile using LS-DYNA[J]. Journal of System Simulation,2010,22(6):1498-1501.(in Chinese)
[8]康德,严平. 基于LS-DYNA的高速破片水中运动特性流固耦合数值模拟[J]. 爆炸与冲击,2014,34(5):534-538.
KANG De,YAN Ping. Movenment characteristics of high-velocity fragments in water medium:numerical simulation using LS-DYNA[J]. Explosing and Shock Waves,2014,34(5):534-538.(in Chinese)
[9]段宇,李琪. 圆柱壳体低速入水空泡试验研究[J]. 企业技术开发,2015,34(11):61-62.
DUAN Yu,LI Qi. Experimental study on low velocity water entry for cylindrical shells[J]. Technological Development of Enterprise,2015,34(11):61-62.(in Chinese)
[10]路中磊,魏英杰,王聪,等. 正浮力开放腔体圆柱壳垂直入水数值研究[J]. 振动与冲击,2016,35(16):79-85.
LU Zhonglei,WEI Yingjie,WANG Cong,et al. Numerical study on vertical water-entry of a cylindrical structure with positive buoyancy and un-closed solid cavity[J]. Journal of Vibration and Shock,2016,35(16):79-85.(in Chinese)
[11]路中磊,魏英杰,王聪,等. 基于高速摄像实验的开放腔体圆柱壳入水空泡流动研究[J]. 物理学报,2016,65(1):301-315.
LU Zhonglei,WEI Yingjie,WANG Cong,et al. An experimental study of water-entry cavitating fows of an end-closed cylindrical shell based on the high-speed imaging technology[J]. Acta Physica Sinica,2016,65(1):301-315.(in Chinese)
[12]朱棒棒,施红辉,侯健,等. 高速射弹入水时空气携带量的数值模拟[J]. 浙江理工大学学报,2017,37(3):402-408.
ZHU Bangbang,SHI Honghui,HOU Jian,et al. Numerical simulation of air entrainment amount during high-speed projectile into water[J]. Journal of Zhejiang Sci-Tech University,2017,37(3):402-408.(in Chinese)
[13]温俊生,施红辉,徐胜利,等. 头型对回转体垂直入水时空泡面闭合影响的数值模拟[J]. 浙江理工大学学报,2018,39(5):573-579.
WEN Junsheng,SHI Honghui,XU Shengli,et al. Numerical simulation of the effects of different heads on surface closure of the water entry supercavity[J]. Journal of Zhejiang Sci-Tech University,2018,39(5):573-579.(in Chinese)
[14]何涛. 基于ALE有限元法的流固耦合强耦合数值模拟[J]. 力学学报,2018,39(2):1549-1561.
HE Tao. A partitioned strong coupling algorithm for fluid-structure interaction using arbitrary Lagrangian-Eulerian finite element formulation[J]. Chinese Journal of Theoretical and Applied Mechanics,2018,39(2):1549-1561.(in Chinese)
[15]李世其,郑际嘉. 平底圆筒底部垂直撞水的实验及数值计算[J]. 航空学报,1996,17(3):265-272.
LI Shiqi,ZHNEG Jijia. Experimental and numerical studies of vertical hydrodynamic impact of flat-bottom cylinder[J]. Acta Aeronautica et Astronautica Sinica,1996,17(3):265-272.(in Chinese)

相似文献/References:

[1]孟庆昌,张志宏,刘巨斌.海洋环境扰动对水下航行体超空泡形态的影响[J].弹道学报,2010,22(04):31.
 MENG Qing chang,ZHANG Zhi hong,LIU Ju bin.Supercavity Profile of Underwater Vehicle Influenced by Environmental Disturbance of Ocean[J].Journal Of Ballistics,2010,22(01):31.
[2]易文俊王中原熊天红,等.水下射弹典型空化器的超空泡形态特性分析[J].弹道学报,2008,20(02):103.
 YI Wen jun,WANG Zhong yuan,XIONG Tian hong,et al.Analysis of Supercavity Shape for Underwater Projectile With Typical Cavitator[J].Journal Of Ballistics,2008,20(01):103.
[3]易文俊,王中原,熊天红,等.水下高速射弹超空泡减阻特性研究[J].弹道学报,2008,20(04):1.
 YI Wen jun,WANG Zhong yuan,XIONG Tian hong,et al.Research on Drag Reduction Characteristics of a UnderwaterHighspeed Supercavitation Projectile[J].Journal Of Ballistics,2008,20(01):1.
[4]张纪华,张宇文,李雨田,等.内压扰动对非定常空泡形态的影响[J].弹道学报,2012,24(01):88.
 ZHANG Ji-hua,ZHANG Yu-wen,LI Yu-tian.Effect of Internal Pressure Perturbation on Unsteady Cavity Form[J].Journal Of Ballistics,2012,24(01):88.
[5]安 海,蒋运华,安伟光.轴对称超空泡流振动频率特性[J].弹道学报,2014,26(03):59.
 AN Hai,JIANG Yun-hua,AN Wei-guang.Frequency Characteristics of Vibration of Axisymmetric Supercavitation[J].Journal Of Ballistics,2014,26(01):59.
[6]施红辉,孙亚亚,周杨洁,等.水下航行体表面凹槽数对超空泡流场影响的数值模拟[J].弹道学报,2017,29(01):44.
 SHI Hong-hui,SUN Ya-ya,ZHOU Yang-jie,et al.Numerical Study of the Supercavitation Flow-field Around UnderwaterVehicle With Different Surface-grooves[J].Journal Of Ballistics,2017,29(01):44.
[7]侯 健,施红辉,孙亚亚,等.高速射弹出水过程中水弹道问题研究[J].弹道学报,2017,29(01):51.
 HOU Jian,SHI Hong-hui,SUN Ya-ya,et al.Study on the Trajectory of High-speed Projectile Exiting From Water[J].Journal Of Ballistics,2017,29(01):51.

备注/Memo

备注/Memo:
收稿日期:2019-01-08
基金项目:浙江省自然科学基金项目(LY16A020003)
作者简介:施红辉(1962- ),男,教授,研究方向为超空泡海战武器与气泡动力学,流体界面RM不稳定性,新型脉冲式消防器。E-mail:hhshi@zstu.edu.cn。
通信作者:贾会霞(1977- ),女,讲师,研究方向为流体机械流体动力学。E-mail:huixia.jia@zstu.edu.cn。
更新日期/Last Update: 2020-03-30