[1]汪 振,吴茂林,戴文留.大口径弹体高速入水载荷特性研究[J].弹道学报,2020,32(01):15-22.[doi:10.12115/j.issn.1004-499X(2020)01-003]
 WANG Zhen,WU Maolin,DAI Wenliu.Study on Load Characteristics of High-speedWater-entry of Large Caliber Projectile[J].Journal Of Ballistics,2020,32(01):15-22.[doi:10.12115/j.issn.1004-499X(2020)01-003]
点击复制

大口径弹体高速入水载荷特性研究()
分享到:

《弹道学报》[ISSN:1004-499X/CN:32-1343/TJ]

卷:
32
期数:
2020年01期
页码:
15-22
栏目:
出版日期:
2020-03-31

文章信息/Info

Title:
Study on Load Characteristics of High-speedWater-entry of Large Caliber Projectile
文章编号:
1004-499X(2020)01-0015-08
作者:
汪 振1吴茂林1戴文留2
1.海军工程大学 兵器工程学院,湖北 武汉 430033; 2.江南工业集团有限公司,湖南 湘潭 411207
Author(s):
WANG Zhen1WU Maolin1DAI Wenliu2
1.College of Arms Engineering,Navy University of Engineering,Wuhan 430033,China2.Jiangnan Industrial Group Co. Ltd.,Xiangtan 411207,China
关键词:
大口径弹体 高速入水 流固耦合
Keywords:
large caliber projectile high-speed water-entry fluid-solid coupling
分类号:
TJ67
DOI:
10.12115/j.issn.1004-499X(2020)01-003
文献标志码:
A
摘要:
针对未来海上平台发射大口径抛射体入水冲击载荷问题,为了研究速度接近200 m/s时,不同速度、入水角度以及攻角对大口径平头弹体入水径向载荷以及轴向载荷的影响,基于LS-DYNA软件,采用多介质ALE方法,对速度在150~190 m/s,入水角度在45°~60°之间,具有3°~7°攻角的弹体入水模型进行数值模拟。结果表明:在同一入水速度的情况下,轴向载荷峰值随入水角度的增加而增加,径向载荷峰值随着入水角度的改变有一定的波动; 在入水初期,径向载荷到达峰值后慢慢趋于稳定并收敛于0; 径向载荷的峰值出现在轴向载荷撞水瞬间产生的第1次小峰值时刻; 正攻角会使弹体产生顺时针旋转的径向载荷,负攻角会使弹体产生逆时针旋转的径向载荷,载荷大小随着攻角数值大小的增大而增大。
Abstract:
Aiming at the problem of water entry overload of large caliber projectile launched by offshore platforms in the future,the effects of different velocities,water inflow angles,and angle of yaw on the radial and axial loads of large caliber flat-nosed projectiles with the velocity approaching 200 m/s were studied. Based on LS-DYNA software,the multi-medium Arabic Lagrange Euler(ALE)method was used to simulate the water entry model of a projectile with velocity of 150-190 m/s,water inflow angle of 45°-60° and angle of yaw of 3°-7°. At the same velocity,the peak value of axial load increases with the increase of water entry angle,and the peak value of radial load fluctuates with the change of water entry angle. At the initial stage of water inflow,the radial load gradually stabilizes and converges to zero after reaching its peak value. The peak value of radial load occurs at the first small peak moment when the axial load collides with water. The positive angle of attack will cause the radial load of clockwise rotation,while the negative angle of attack will cause the radial load of counter-clockwise rotation. The magnitude of the load increases with the increase of the numerical value of the angle of attack.

参考文献/References:

[1] 王永虎,石秀华. 入水冲击问题研究的现状与进展[J]. 爆炸与冲击,2008,28(3):276-282.
WANG Yonghu,SHI Xiuhua. Review on research and development of water-entry impact problem[J]. Explosion and Shock Waves,2008,28(3):276-282.(in Chinese)
[2]秦洪德,赵林岳,申静. 入水冲击问题综述[J]. 哈尔滨工业大学学报,2011,43(S1):152-157.
QIN Hongde,ZHAO Linyue,SHEN Jing. Review of water entry problem[J]. Journal of Harbin Institute of Technology,2011,43(S1):152-157.(in Chinese)
[3]顾建龙,张志宏,郑学龄,等. 弹体入水弹道研究综述[J]. 海军工程大学学报,2000(1):152-157.
GU Jianlong,ZHANG Zhihong,ZHENG Xueling,et al. Summary of research on inlet trajectory of projectile[J]. Journal of Naval University of Engineering,2000(1):152-157.(in Chinese)
[4]Von KARMAN T. The impact of seaplane floats during landing[R]. Washington DC,USA:National Advisory Committee for Aeronautics,1929.
[5]WAGNER V H. Phenomena associated with impacts and sliding on liquid surfaces[J]. Z Angew Math Mech,1932,12(4):193-215.
[6]魏卓慧,王树山,马峰. 刚性截锥形弹体入水冲击载荷[J]. 兵工学报,2010,31(1):118-120.
WEI Zhuohui,WANG Shushan,MA Feng. Diving impact load of rigid truncated conical projectile[J]. Acta Armamentarii,2010,31(1):118-120.(in Chinese)
[7]陈诚,袁绪龙,党建军,等. 超空泡航行器20°角倾斜入水冲击载荷特性试验研究[J]. 兵工学报,2018,39(6):1159-1163.CHEN Cheng,YUAN Xulong,DANG Jianjun,et al. Experimental investigation into impact load during oblique water-entry of a supercavitating vehicle at 20°[J]. Acta Armamentarii,2018,39(6):1159-1163.(in Chinese)
[8]陆丽睿,魏英杰,王聪,等. 不同头型射弹低速倾斜入水空泡及弹道特性试验研究[J]. 兵工学报,2018,39(7):1364-1371.
LU Lirui,WEI Yingjie,WANG Cong,et al. Experimental investigation into the cavity and ballistic characteristics of low-speed oblique water entry of revolution body[J]. Acta Armamentarii,2018,39(7):1364-1371.(in Chinese)
[9]黄志刚,孙铁志. 平头锥型回转体高速入水结构强度数值分析[J]. 爆炸与冲击,2019,39(4):043201.
HUANG Zhigang,SUN Tiezhi. Numerical analysis of structural strength of a cone-shape flatted revolution body during high-speed water-entry[J]. Explosion and Shock Waves,2019,39(4):043201.(in Chinese)
[10]李上明,屈明. 基于ALE方法的楔形体入水分析[J]. 计算机辅助工程,2018,27(3):48-53.
LI Shangming,QU Ming. Wedge water entry analysis based on ALE method[J]. Computer Aided Engineering,2018,27(3):48-53.(in Chinese)
[11]时党勇,李裕春,张胜民. 基于ANSYS/LS-DYNA 8.1的显示动力分析[M]. 北京:清华大学出版社,2005.
SHI Dangyong,LI Yuchun,ZHANG Shengmin. Display dynamic analysis based on ANSYS/LS-DYNA 8.1[M]. Beijing:Tsinghua University Press,2005.(in Chinese)
[12]石少卿,康建功. ANSYS/LS-DYN在爆炸与冲击领域内的工程应用[M]. 北京:中国建筑工业出版社,2011.
SHI Shaoqing,KANG Jiangong. Engineering application of ANSYS/LS-DYN in the field of explosion and impact[M]. Beijing:China Construction Industry Press,2011.(in Chinese)
[13]LSTC. LS-DYNA Keyword User’s Manual:Volume Ⅰ R8.0[DB/OL]. 2015. http://www. lstc. com/download/manuals.
[14]LSTC. LS-DYNA Keyword User’s Manual:Volume Ⅱ Material Models R8.0[DB/OL]. 2015. http://www. lstc. com/download/manuals.
[15]LEE M,LONGORIA R G,WILSON D E. Cavity dynamics in high-speed water entry[J]. Phys Fluid,1997,9(3):540-550.
[16]MAY A. Water entry and the cavity-running behavior of missiles:ADA020429[R]. Maryland:White Oak Laboratory,1975.

备注/Memo

备注/Memo:
收稿日期:2019-07-08
作者简介:汪振(1995- ),男,硕士研究生,研究方向为武器系统运用与保障工程。E-mail:849217076@qq.com。
更新日期/Last Update: 2020-03-30