[1]张隽研,王学德.临近空间高超声速空腔几何特性的DSMC研究[J].弹道学报,2020,32(01):47-54.[doi:10.12115/j.issn.1004-499X(2020)01-007]
 ZHANG Junyan,WANG Xuede.DSMC Study on Geometric Characteristics of HypersonicCavity in Adjacent Space[J].Journal Of Ballistics,2020,32(01):47-54.[doi:10.12115/j.issn.1004-499X(2020)01-007]
点击复制

临近空间高超声速空腔几何特性的DSMC研究()
分享到:

《弹道学报》[ISSN:1004-499X/CN:32-1343/TJ]

卷:
32
期数:
2020年01期
页码:
47-54
栏目:
出版日期:
2020-03-31

文章信息/Info

Title:
DSMC Study on Geometric Characteristics of HypersonicCavity in Adjacent Space
文章编号:
1004-499X(2020)01-0047-08
作者:
张隽研王学德
南京理工大学 能源与动力工程学院,江苏 南京 210094
Author(s):
ZHANG JunyanWANG Xuede
School of Energy and Power Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
空腔 稀薄气体 蒙特卡洛法 再循环区域
Keywords:
cavity rarefied gas Monte-Carlo method recirculation region
分类号:
V19; V211
DOI:
10.12115/j.issn.1004-499X(2020)01-007
文献标志码:
A
摘要:
为研究稀薄流区域内空腔内流场的流动特性,采用非结构网格直接模拟蒙特卡洛方法(DSMC)对临近空间不同高度下的不同几何形状空腔进行模拟。模拟条件:高度分别为50 km,60 km,70 km,80 km,90 km; 空腔的长度与深度之比分别为1,2,3,4,5,6,7,8,9,10; 壁面的倾斜角为30°,45°,60°,75°; 来流的马赫数分别设置为5,10,15,20。模拟结果表明:不同的几何形状对空腔内的再循环区域有着显著的影响; 稀薄流区域内不同高度和速度下,空腔内流场的流动结构会在特定的长深比发生类型转变。此外,研究发现改变空腔壁面的倾斜角度可以消除空腔内的再循环区域; 30°以下的角度为适合的倾斜角度。
Abstract:
In order to study the flow characteristics of flow field in the cavity in the rarefied flow region,the direct simulation Monto-Carlo(DSMC)method with unstructured grid was used to simulate different geometrical cavities at different heights in the adjacent space. The cases had different calculation parameters. The height was 50 km,60 km,70 km,80 km and 90 km; the length-to-depth ratio was 1,2,3,4,5,6,7,8,9 and 10; the inclination angle of the wall was 30°,45°,60° and 75°; the Mach number of inflow was 5,10,15 and 20,respectively. The simulation result shows that different geometries had a significant effect on the recirculation area within the cavity. At different heights and velocities in the rarefied flow region,the flow structure of the flow field in the cavity will change in type at a specific aspect ratio. The study shows that it can eliminate the recirculation area in the cavity to change the inclination angle of the cavity wall surface,and the angle below 30° is a suitable inclination angle.

参考文献/References:

[1] 耿云飞,阎超. 高超声速前缘空腔数值模拟研究[J]. 空气动力学学报,2011,29(4):470-475.
GENG Yunfei,YAN Chao. Numerical simulation on the hypersonic leading edge cavity[J]. Acta Aerodynamica Sinica,2011,29(4):470-475.(in Chinese)
[2]党天骄,刘振,周学文,等. 高超声速火箭橇导流板气动参数数值研究[J/OL]. 固体火箭技术,1-10[2019-12-29]. http://kns. cnki. net/kcms/detail/61. 1176. V. 20190920. 1443. 002. html.
DANG Tianjiao,LIU Zhen,ZHOU Xuewen,et al. Numerical investigation on aerodynamic parameters of deflector of hypersonic rocket sled[J/OL]. Journal of Solid Rocket Technology,1-10[2019-12-29]. http://kns. cnki. net/kcms/detail/61. 1176. V. 20190920. 1443. 002. html.(in Chinese)
[3]谭杰,孙晓峰,刘芙群,等. 高超声速平板/空气舵热环境数值模拟研究[J]. 空气动力学学报,2018,37(1):153-159.
TAN Jie,SUN Xiaofeng,LIU Fuqun,et al. Numerical simulation of aerodynamic heating environment of a hypersonic plate/rudder configuration[J]. Acta Aerodynamica Sinica. 2018,37(1):153-159.(in Chinese)
[4]PALHARINI R C,SCANLON T J,REESE J M. Aerothermody-namic comparison of two and three-dimensional rarefied hypersonic cavity flows[J]. Journal of Spacecraft & Rockets,2014,51(5):1619-1630.
[5]MURRAY N,UKEILEY L. Flow field dynamics in open cavity flows[C]//The 12th AIAA/CEAS Aeroacoustics Conference. Cambridge,Massachusetts:AIAA,2006:1-16.
[6]MAULL D J,EAST L F. Three-dimensional flow in cavities[J]. Journal of Fluid Mechanics,1963,16(4):620.
[7]STALLINGS R L. Experimental cavity pressure distributions at supersonic speeds:NASA TP-2683[R]. [S.l.]:NASA,1987.
[8]谢露,艾俊强,李权,等. 长深比对空腔流动与声学特性的影响分析[J]. 航空工程进展,2014,5(1):18-24.
XIE Lu,AI Junqiang,LI Quan,et al. Effect of length-to-depth ratio on flow and aeroacoustic characteristics of cavity[J]. Advances in Aeronautical Science and Engineering,2014,5(1):18-24.(in Chinese)
[9]靳旭红,黄飞,程晓丽,等. 稀薄流区高超声速飞行器表面缝隙流动结构及气动热环境的分子模拟[J]. 航空动力学报,2019,34(1):208-216.
JIN Xuhong,HUANG Fei,CHENG Xiaoli,et al. Monte-Carlo simulation for the flow-field structure and aerodynamic heating due to cavities on hypersonic vehicle surfaces in the rarefied flow regime[J]. Journal of Aerospace Power,2019,34(1):208-216.(in Chinese)
[10]PALHARINI R C,SANTOS W F N. The impact of the length-to-depth ratio on aerodynamic surface quantities of a rarefied hypersonic cavity flow[J]. Aerospace Science and Technology,2019,88:110-125.
[11]GUO G,LUO Q. DSMC investigation on flow characteristics of rarefied hypersonic flow over a cavity with different geometric shapes[J]. International Journal of Mechanical Sciences,2018,148:496-509.
[12]GALLIS M A,TORCZYNSKI J R,RADER D J,et al. Convergence behavior of a new DSMC algorithm[J]. Journal of Computational Physics,2009,228(12):4532-4548.
[13]GOSHAYESHI B,ROOHI E,STEFANOV S. A novel simplified Bernoulli trials collision scheme in the direct simulation Monte Carlo with intelligence over particle distances[J]. Physics of Fluids,2015,27(10):107104.
[14]HUANG W,POURKASHANIAN M,MA L,et al. Effect of geometric parameters on the drag of the cavity flameholder based on the variance analysis method[J]. Aerospace Science and Technology,2012,21(1):24-30.
[15]PALHARINI R C,SCANLON T J,WHITE C. Chemically reacting hypersonic flows over 3D cavities-flow field structure characterisation[J]. Computers & Fluids,2018,165:173-187.

备注/Memo

备注/Memo:
收稿日期:2019-06-25
基金项目:江苏省青蓝项目资助项目; 国家留学基金委出国留学资助项目
作者简介:张隽研(1994- ),男,硕士研究生,研究方向为高超声速稀薄气体动力学。E-mail:470218169@qq.com。
通信作者:王学德(1977- ),男,副教授,工学博士,研究方向为稀薄气体动力学。E-mail:wangxuede2000@njust.edu.cn。
更新日期/Last Update: 2020-03-30