[1]刘 宁,王 帅,胡梦凡.基于Beam-based近场动力学模型的材料冲击响应研究[J].弹道学报,2020,32(01):77-82.[doi:10.12115/j.issn.1004-499X(2020)01-011]
 LIU Ning,WANG Shuai,HU Mengfan.Application of Beam-based Peridynamic in StudyingMaterial Impact Response[J].Journal Of Ballistics,2020,32(01):77-82.[doi:10.12115/j.issn.1004-499X(2020)01-011]
点击复制

基于Beam-based近场动力学模型的材料冲击响应研究()
分享到:

《弹道学报》[ISSN:1004-499X/CN:32-1343/TJ]

卷:
32
期数:
2020年01期
页码:
77-82
栏目:
出版日期:
2020-03-31

文章信息/Info

Title:
Application of Beam-based Peridynamic in StudyingMaterial Impact Response
文章编号:
1004-499X(2020)01-0077-06
作者:
刘 宁王 帅胡梦凡
南京理工大学 机械工程学院,江苏 南京 210094
Author(s):
LIU NingWANG ShuaiHU Mengfan
School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China
关键词:
近场动力学 泊松比 梁单元模型 冲击破坏
Keywords:
peridynamics Poisson’s ratio beam element model impact failure
分类号:
O347.1
DOI:
10.12115/j.issn.1004-499X(2020)01-011
文献标志码:
A
摘要:
采用近场动力学方法研究材料冲击破坏动态行为,针对常规键基近场动力学模型对材料泊松比的限制,借鉴有限元Euler-Bernoulli梁单元模型,在键基近场动力学模型的基础上加入物质点间相对转动效应,建立了新型Beam-based近场动力学本构模型,推导了二维和三维条件下Beam-based近场动力学模型微弹性模量矩阵。为了验证新型模型在冲击动力学中的适用性,研究了不同泊松比矩形板的二维冲击响应,结果表明矩形板位移响应与有限元结果一致。建立了三维Kalthoff-Winkler冲击破坏模型,获得了裂纹扩展角度和发展过程,结果表明:该文模拟的裂纹扩展过程与实验结果符合较好,新型Beam-based近场动力学模型有效拓展了传统键基模型的应用范围,并为冲击动力学问题研究提供了一条新的途径。
Abstract:
The impact failure behavior of materials was researched by peridynamic method. In view of the conventional bond-based peridynamic model’s limitation to the material Poisson’s ratio,the relative rotation effect between the material points based on the bond-based peridynamics model by using the finite element Euler-Bernoulli beam element model was added,and a new Beam-based peridynamics constitutive model was established. The microelastic modulus matrixs of Beam-based models under two-dimensional conditions and three-dimensional conditions were derived. In order to verify the applicability of the new model in impact dynamics,the two-dimensional impact response of rectangular plate with different Poisson’s ratios was studied. The result shows that the displacement response of the rectangular plate is consistent with the finite element result. Furthermore,a three-dimensional Kalthoff-Winkler impact failure model was established to simulate the crack propagation angle and developing process. The results are in good agreement with the experimental data. The new Beam-based peridynamics model effectively expands the application range of the traditional bond-based model,and provides a new approach for the study of impact dynamics.

参考文献/References:

[1] SILLING S A. Reformulation of elasticity theory for discontinuities and long-range forces[J]. Journal of the Mechanics and Physics of Solids,2000,48(1):175-209.
[2]SILLING S A,ASKARI E. A meshfree method based on the peridynamic model of solid mechanics[J]. Computers & Structures,2005,83:1526-1535.
[3]AGWAI A,GUVEN I,MADENCI E. Predicting crack propagation with peridynamics:a comparative study[J]. International Journal of Fracture,2011,171(1):65-78.
[4]LIU R,YAN J,LI S. Modeling and simulation of ice-water interactions by coupling peridynamics with updated Lagrangian particle hydrodynamics[J]. Computational Particle Mechanics,2020,7:241-255.
[5]顾鑫,章青,黄丹. 基于近场动力学方法的混凝土板侵彻问题研究[J]. 振动与冲击,2016,35(6):52-58.
GU Xin,ZHANG Qing,HUANG Dan. Peridynamics used in solving penetration problem of concrete slabs[J]. Journal of Vibration and Shock,2016,35(6):52-58.(in Chinese)
[6]LI X F. A unified approach for analyzing static and dynamic behaviors of functionally graded Timoshenko and Euler-Bernoulli beams[J]. Journal of Sound and Vibration,2008,318(4/5):1210-1229.
[7]焦卫东,郭红祥. 基于欧拉梁单元模型的裂纹转子变刚度特性分析[J]. 机械设计与研究,2013,29(2):57-59.
JIAO Weidong,GUO Hongxiang. Analysis on stiffness variation characteristics of a cracked rotor modelled by Euler beam element[J]. Machine Design and Research,2013,29(2):57-59.(in Chinese)
[8]贺丹,陈博,杨万里. 微细观尺度下欧拉梁的力学模型及有限元法[J]. 沈阳航空航天大学学报,2016,33(4):25-29.
HE Dan,CHEN Bo,YANG Wanli. Mechanical model and finite element analysis of Euler beam in a micro scale[J]. Journal of Shenyang Aerospace University,2016,33(4):25-29.(in Chinese)
[9]WANG C M. Timoshenko beam-bending solutions in terms of Euler-Bernoulli solutions[J]. Journal of Engineering Mechanics,1995,121(6):763-765.
[10]MADENCI E,OTERKUS E. Peridynamic theory and its applications[M]. Heidelberg Dordrecht:Springer,2014:186-187.
[11]KALTHOFF J F,WINKLER S. Failure mode transition at high rates of shear loading[C]//International Conference on Impact Loading and Dynamic Behavior of Materials. Oberursel:IFAM,1987:185-195.
[12]SONG J H,WANG H,BELYTSCHKO T. A comparative study on finite element methods for dynamic fracture[J]. Computational Mechanics,2008,42(2):239-250.

备注/Memo

备注/Memo:
收稿日期:2019-03-12
基金项目:冲击波物理与爆轰物理重点实验室基金项目(6142A0302020517)
作者简介:刘宁(1980- ),男,副教授,研究方向为近场动力学理论及应用研究。E-mail:ln101@163.com。
更新日期/Last Update: 2020-03-30