[1]杨 芳,张宽桥,余 磊.自适应非奇异快速终端二阶滑模制导律[J].弹道学报,2020,32(02):7-15.[doi:10.12115/j.issn.1004-499X(2020)02-002]
 YANG Fang,ZHANG Kuanqiao,YU Lei.Adaptive Nonsingular Fast Terminal Second-order Sliding Mode Guidance Law[J].Journal Of Ballistics,2020,32(02):7-15.[doi:10.12115/j.issn.1004-499X(2020)02-002]
点击复制

自适应非奇异快速终端二阶滑模制导律()
分享到:

《弹道学报》[ISSN:1004-499X/CN:32-1343/TJ]

卷:
32
期数:
2020年02期
页码:
7-15
栏目:
出版日期:
2020-06-30

文章信息/Info

Title:
Adaptive Nonsingular Fast Terminal Second-order Sliding Mode Guidance Law
文章编号:
1004-499X(2020)02-0007-09
作者:
杨 芳1张宽桥2余 磊2
1.西安航空学院 飞行器学院,陕西 西安 710077; 2.洛阳电子信息装备试验中心,河南 洛阳 471003
Author(s):
YANG Fang1ZHANG Kuanqiao2YU Lei2
1.Aircraft Academy,Xi’an Aeronautical University,Xi’an 710077,China; 2.Luoyang Electronic Equipment Test Center of China,Luoyang 471003,China
关键词:
制导律 非奇异终端滑模 有限时间收敛 角度约束 超螺旋算法 二阶滑模
Keywords:
guidance law nonsingular terminal sliding mode finite-time convergence angle constraint super-twisting algorithm second-order sliding mode
分类号:
TJ765.3
DOI:
10.12115/j.issn.1004-499X(2020)02-002
文献标志码:
A
摘要:
针对打击机动目标带攻击角度约束的末制导问题,提出了一种带攻击角度约束的制导律。基于弹目相对运动模型,将攻击角度约束问题转化为终端视线角约束问题。设计了一种新型非奇异快速终端滑模面,结合改进的超螺旋算法,提出了一种自适应非奇异快速终端二阶滑模制导律。该制导律能够使弹目视线角及其角速率有限时间收敛,并设计了参数自适应律有效补偿未知扰动。通过仿真实验,验证了所提制导律能以期望攻击角度精确命中目标,且与现有制导律相比,收敛速度更快,制导精度更高,能量消耗更少。
Abstract:
Aiming at the terminal guidance with impact angle constraint against maneuvering targets,a guidance law with impact angle constraint was proposed. Based on the relative motion model of the missile and target,the impact angle constraint was transformed into the terminal line of sight(LOS)angle constraint. A new nonsingular fast terminal sliding-mode-surface was designed. Combined with the improved super-twisting algorithm,an adaptive nonsingular fast terminal second-order sliding-mode guidance law was proposed. The guidance law can make the LOS angle and LOS angular rate converge in finite-time,and a parameter adaptive-law was designed to effectively compensate the unknown disturbance. The simulation results indicate that by the proposed guidance law,the target can be accurately intercepted with expected impact angle. Compared with the existing guidance laws,the proposed guidance law has faster convergence speed,higher guidance precision and less energy consumption.

参考文献/References:

[1] 蔡洪,胡正东,曹渊. 具有终端角度约束的导引律综述[J]. 宇航学报,2010,31(2):345-323.
CAI Hong,HU Zhengdong,CAO Yuan. A survey of guidance law with terminal impact angle constraints[J]. Journal of Astronautics,2010,31(2):345-323(in Chinese)
[2]SONG J M,ZHANG T Q. Passive homing missile’s variable structure proportional navigation with terminal angular constraint[J]. Chinese Journal of Aeronautics,2001,14(2):83-87.
[3]吴鹏,杨明. 带终端攻击角度约束的变结构制导律[J]. 固体火箭技术,2008,31(2):116-120.
WU Peng,YANG Ming. Variable structure guidance law with terminal attack angle constraint[J]. Journal of Solid Rocket Technology,2002,31(2):116-120.(in Chinese).
[4]KUMAR S R,RAO S,GHOSE D. Sliding-mode guidance and control for all-aspect interceptors with terminal angle constraints[J]. Journal of Guidance,Control and Dynamics,2012,35(4):1230-1246.
[5]SONG J H,SONG S M,GUO Y,et al. Nonlinear disturbance observer based fast terminal sliding mode guidance with impact angle constraints[J]. International Journal of Innovative Computing,Information and Control,2015,11(3):787-802.
[6]WANG W H,XIONG S F,LIU X D,et al. Adaptive nonsingular terminal sliding mode guidance law against maneuvering targets with impact angle constraint[J]. Proceedings of the Institution of Mechanical Engineers,Part G:Journal of Aerospace Engineering,2015,229(5):867-890.
[7]SONG J H,SONG S M. Three-dimensional guidance law based on adaptive integral sliding mode control[J]. Chinese Journal of Aeronautics,2016,29(1):202-214.
[8]熊少锋,王卫红,王森. 带攻击角度约束的非奇异快速终端滑模制导律[J]. 控制理论与应用,2014,31(3):269-278.
XIONG Shaofeng,WANG Weihong,WANG Sen. Nonsingular fast terminal sliding-mode guidance with intercept angle constrint[J]. Control Theory & Applications,2014,31(3):269-278.(in Chinese)
[9]ZHANG Z L,ZHOU J. Strictly convergent non-singular terminal sliding mode guidance law with impact angle constraints[J]. Optik,2016,127(22):10971-10980.
[10]ZHANG N,GAI W D,ZHONG M Y,et al. A fast finite-time convergent guidance law with nonlinear disturbance observer for unmanned aerial vehicles collision avoidance[J]. Aerospace Science and Technology,2019,86:204-214.
[11]SONG J H,SONG S M. Robust impact angel constraints guidance law with autopilot lag and acceleration saturation consideration[J]. Transactions of the Institute of Measurement and Control,2019,41(1):182-192.
[12]LEVANT A. Principles of 2-sliding mode design[J]. Automatica,2007,43(4):576-586.
[13]HE S M,LIN D F,WANG J. Continuous second-order sliding mode based impact angle guidance law[J]. Aerospace Science and Technology,2015,41:199-208.
[14]ZHOU A M. Finite-time output feedback attitude tracking control for rigid spacecraft[J]. IEEE Transactions on Control Systems Technology,2014,22(1):338-345.
[15]LI B,HU Q L,YU Y B,et al. Observer-based fault-tolerant attitude control for rigid spacecraft[J]. IEEE Transactions on Aerospace and Electronic Systems,2017,53(5):2572-2582.
[16]LI H,CAI Y. On SFTSM control with fixed-time convergence[J]. IET Control Theory & Applications,2017,11(6):766-773.
[17]EVANGELISTA C,PULESTON P,VALENCIAGA F,et al. Lyapunov-designed super-twisting sliding mode control for wind energy conversion optimization[J]. IEEE Transactions on Industrial Electronics,2013,60(2):538-545.
[18]CONG B L,CHEN Z,LIU X D. On adaptive sliding mode control without switching gain overestimation[J]. International Journal of Robust and Nonlinear Control,2014,24(3):515-531.

相似文献/References:

[1]张飞宇.BTT导弹利亚普诺夫制导律的工程应用[J].弹道学报,2011,23(01):80.
 ZHANG Fei yu.Engineering Application of Lyapunov Guidance Law on BanktoTurn Missile[J].Journal Of Ballistics,2011,23(02):80.
[2]胡云安,赵永涛.舰空导弹超视距拦截制导律设计与指令解算[J].弹道学报,2011,23(01):88.
 HU Yun an,ZHAO Yong tao.Design of Guidance Law for Beyondvisualrange Interception of ShipAir Missile and Instruction Solution[J].Journal Of Ballistics,2011,23(02):88.
[3]马克茂.带有终端视线约束的非光滑制导律设计[J].弹道学报,2011,23(02):0.
 MA Ke-mao.Design of Non-smooth Guidance Law With Terminal Line-of-Sight Constraint[J].Journal Of Ballistics,2011,23(02):0.
[4]陈兴林,花文华.具有终端约束的地面目标拦截比例导引[J].弹道学报,2010,22(02):18.
 CHEN Xing lin,HUA Wen hua.Ground Target Interception Proportional Navigation Law With Terminal Constraints[J].Journal Of Ballistics,2010,22(02):18.
[5]马克茂.高精度制导律的非光滑设计与实现[J].弹道学报,2013,25(02):1.
 MA Ke-mao.Non-smooth Design and Implementation of High-precision Guidance Laws[J].Journal Of Ballistics,2013,25(02):1.
[6]秦 潇,李 炯,邵 雷,等.基于扩张状态观测器的攻击角度约束制导律[J].弹道学报,2016,28(03):53.
 QIN Xiao,LI Jiong,SHAO Lei,et al.Guidance Law with Terminal Attack Angle ConstraintBased on Extended State Observer[J].Journal Of Ballistics,2016,28(02):53.
[7]常晓飞,孙 博,闫 杰,等.针对高速机动目标的三维非线性微分对策制导律[J].弹道学报,2018,30(03):1.[doi:10.12115/j.issn.1004-499X(2018)03-001]
 CHANG Xiaofei,SUN Bo,YAN Jie,et al.3-Dimensional Nonlinear Differential Game-based GuidanceLaw Against High-speed Maneuvering Target[J].Journal Of Ballistics,2018,30(02):1.[doi:10.12115/j.issn.1004-499X(2018)03-001]
[8]张宽桥,杨锁昌,刘 畅.基于ESO的拦截机动目标带攻击角度约束制导律[J].弹道学报,2019,31(04):8.[doi:10.12115/j.issn.1004-499X(2019)04-002]
 ZHANG Kuanqiao,YANG Suochang,LIU Chang.ESO-based Guidance Law With Impact Angle Constraintfor Maneuvering Targets[J].Journal Of Ballistics,2019,31(02):8.[doi:10.12115/j.issn.1004-499X(2019)04-002]

备注/Memo

备注/Memo:
收稿日期:2019-11-04
作者简介:杨芳(1979- ),女,工程师,博士后,研究方向为反坦克导弹关键技术。E-mail:12291058@qq.com。
通讯作者:张宽桥(1992- ),男,博士,研究方向为精确制导理论与技术。E-mail:zkuanqiao@163.com。
更新日期/Last Update: 1900-01-01