[1]程 玉,陈智刚,杨 芮,等.无量纲参数对破片弹道极限速度的影响[J].弹道学报,2022,34(04):8-14.[doi:10.12115/j.issn.1004-499X(2022)04-002]
 CHENG Yu,CHEN Zhigang,YANG Rui,et al.Influence of Dimensionless Parameters on Ballistic Limit Velocity of Fragments[J].Journal Of Ballistics,2022,34(04):8-14.[doi:10.12115/j.issn.1004-499X(2022)04-002]
点击复制

无量纲参数对破片弹道极限速度的影响()
分享到:

《弹道学报》[ISSN:1004-499X/CN:32-1343/TJ]

卷:
34
期数:
2022年04期
页码:
8-14
栏目:
出版日期:
2022-12-31

文章信息/Info

Title:
Influence of Dimensionless Parameters on Ballistic Limit Velocity of Fragments
文章编号:
1004-499X(2022)04-0008-07
作者:
程 玉12陈智刚2杨 芮12任 凯2付建平2
1.中北大学 机电工程学院,山西 太原 030051; 2.中北大学 地下目标毁伤技术国防重点学科实验室,山西 太原 030051
Author(s):
CHENG Yu12CHEN Zhigang2YANG Rui12REN Kai2FU Jianping2
1.College of Mechatronics Engineering,North University of China,Taiyuan 030051,China; 2.National Defense Key Laboratory of Underground Target Damage Technology,North University of China,Taiyuan 030051,China
关键词:
93W钨合金 无量纲 破片 弹道极限速度 侵彻性能
Keywords:
93W tungsten alloy dimensionless fragments ballistic limit velocity penetration performance
分类号:
TJ303.4
DOI:
10.12115/j.issn.1004-499X(2022)04-002
文献标志码:
A
摘要:
为开展93W钨合金破片对616装甲钢侵彻性能的研究,通过弹道枪试验分别对立方破片(底面为正方形)和圆柱破片进行了弹道极限速度测试,并基于试验结果对理论公式进行了修正,修正后的公式可应用于预测破片弹道极限速度。将仿真结果与试验结果进行了对比,验证了材料的可靠性,根据破片初速及剩余速度建立回归方程,外推得到破片的弹道极限速度,并进一步研究了无量纲弹长及无量纲靶厚对弹道极限速度的影响。结果表明,当确定破片及靶板的材料后,弹道极限速度仅与无量纲弹长和无量纲靶厚有关; 当无量纲弹长与无量纲靶厚确定后,破片形状对弹道极限速度的影响非常明显,立方破片更容易穿透靶板。当无量纲靶厚为1.6时,破片正侵彻12 mm厚度的靶板,弹道极限速度随破片无量纲弹长的增加而加大,且无量纲弹长每增加0.1,破片的弹道极限速度增加约45 m/s; 当无量纲弹长为1.0时,破片正侵彻不同厚度的靶板,弹道极限速度随无量纲靶厚的增加而加大,且无量纲靶厚每增加0.1,破片的弹道极限速度增加约50 m/s。
Abstract:
In order to study the penetration performance of 93W tungsten alloy fragments into 616 armor steel,the ballistic limit velocity of cubic fragments(with square bottom)and cylindrical fragments were tested by ballistic gun tests,and the theoretical formula was modified by the test results. The modified formula can be used to predict the ballistic limit velocity of fragments. The simulation results were compared with the test results to verify the reliability of the materials. The regression equation was established according to the initial velocity and residual velocity of the fragments. The ballistic limit velocity of the fragments was obtained by extrapolating the regression equation obtained. The influence of the dimensionless projectile length(DPL)and the dimensionless target thickness(DTT)on the ballistic limit velocity was further studied. The results show that when the materials of fragments and target plates are determined,the ballistic limit velocity is only related to DPL and DPL. When DPL and DTT are determined,the influence of fragment shape on the ballistic limit velocity is obvious,and cubic fragments are easier to penetrate the target plates. When the DTT is 1.6,the ballistic limit velocity increases with the increase of DPL of the fragment when vertically penetrating the target plate with thickness of 12 mm. The ballistic limit velocity of the fragment increases about 45 m/s for every 0.1 increase of DPL value. When the DPL is 1.0,and the ballistic limit velocity increases with the increase of the DTT when vertically penetrating targets with different thickness. The ballistic limit velocity of the fragments increases about 50 m/s for every 0.1 increase of the DTT.

参考文献/References:

[1] 黄正祥,祖旭东. 终点效应[M]. 北京:科学出版社,2014.
HUANG Zhengxiang,ZU Xudong. Terminal effects[M]. Beijing:Science Press,2014.(in Chinese)
[2]何降润. 穿燃含能破片侵彻靶板后的毁伤效能[D]. 太原:中北大学,2021.
HE Jiangrun. Study on the damage effectiveness of energy-containing fragments penetrating a target plate through combustion[D]. Taiyuan:North University of China,2021.(in Chinese)
[3]李付刚,梁民族,李翔宇,等. 杀伤爆破战斗部杀伤威力的多目标优化[J]. 兵工学报,2021,42(1):11-21.
LI Fugang,LIANG Minzu,LI Xiangyu,et al. Multi-objective optimization of lethal power of blast-fragmentation warhead[J]. Acta Armamentarii,2021,42(1):11-21.(in Chinese)
[4]舒张忆南,梁争峰,阮喜军,等. 多种因素影响下钨合金破片的穿甲深度研究[J]. 兵器装备工程学报,2022,43(4):25-30.
SHU Zhangyinan,LIANG Zhengfeng,RUAN Xijun,et al. Research on penetration depth of tungsten alloy fragments under influence of many factors[J]. Journal of Ordnance Equipment Engineering,2022,43(4):25-30.(in Chinese)
[5]张钰龙,郑宾,郭华玲,等. 球形钨破片侵彻钢靶毁伤效应研究[J]. 兵器装备工程学报,2020,41(5):32-36.
ZHANG Yulong,ZHENG Bin,GUO Hualing,et al. Study on damage effect of spherical tungsten fragments penetrating steel targets[J]. Journal of Ordnance Equipment Engineering,2020,41(5):32-36.(in Chinese)
[6]徐豫新,王树山,翟喆,等. 高速钨合金破片对中厚钢靶的穿甲效应研究[J]. 兵工学报,2009,30(2):259-262.
XU Yuxin,WANG Shushan,ZHAI Zhe,et al. Research on armour-piercing effect of high velocity tungsten alloy fragment against medium-thick steel target[J]. Acta Armamentarii,2009,30(2):259-262.(in Chinese)
[7]陈志斌,刘志刚. 球形弹垂直碰撞金属靶板的实验研究[J]. 弹道学报,1991(1):66-70.
CHEN Zhibing,LIU Zhigang. Experimental investigation on the metal target by normal impact of spherical shell[J]. Journal of Ballistics,1991(1):66-70.(in Chinese)
[8]任杰,徐豫新,王树山. 超高强度平头圆柱形弹体对低碳合金钢板的高速撞击实验[J]. 爆炸与冲击,2017,37(4):629-636.
REN Jie,XU Yuxin,Wang Shushan. High-speed impact of low-carbon alloy steel plates by ultra-high strength blunt projectiles[J]. Explosion and Shock Waves,2017,37(4):629-636.(in Chinese)
[9]张健,徐豫新,刘铁磊,等. 钨球对高硬度钢斜侵彻效应[J]. 爆炸与冲击,2022,42(2):71-82.
ZHANG Jian,XU Yuxin,LIU Tielei,et al. Oblique penetration effect of a tungsten ball on high hardness steel[J]. Explosion and Shock Waves,2022,42(2):71-82.(in Chinese)
[10]吴群彪,沈培辉,刘荣忠. 碳化钨长杆体侵彻半无限钢靶的特性研究[J]. 弹道学报,2013,25(4):75-78.
WU Qunbiao,SHEN Peihui,LIU Rongzhong. Study on characteristic of tungsten-carbide long-rod penetrating into semi-infinite steel target[J]. Journal of Ballistics,2013,25(4):75-78.(in Chinese)
[11]吴晓凤. 预制钨合金破片形状/入射角对穿甲影响的数值模拟[D]. 绵阳:西南科技大学,2017.
WU Xiaofeng. Prefabricated tungsten alloy shape/incidence angle on numerical simulation of penetration effect[D]. Mianyang:Southwest University of Science and Technology,2017.(in Chinese)
[12]LEPPIN S,WOODWARD R L. Perforation mechanisms in thin titanium alloy targets[J]. International Journal of Impact Engineering,1986,4(2):107-115.
[13]RECHT R F. Taylor ballistic impact modelling applied to deformation and mass loss determinations[J]. International Journal of Impact Engineering,1978,6(11):809-827.
[14]欧阳楚萍,徐学华,高森烈. 相似与弹药模化. 北京:兵器工业出版社,1995.
OUYANG Chuping,XU Xuehua,GAO Senlie. Similarity and ammunition modeling[M]. Beijing:Ordnance Industry Press,1995.(in Chinese)
[15]CHEN S R,GRAY G T. Constitutive behavior of tungsten and tantalum:experiments and modeling[C]. Proceedings of the 2nd International Conference on Tungsten and Refractory Metals,Metal Powders Industries Federation. McLean VA:APMI International,1995:489-498.
[16]赵丽俊,焦志刚,李晓婕,等. 预制破片侵彻均质装甲钢的极限穿透速度[J]. 爆炸与冲击,2018,38(1):183-190.
ZHAO Lijun,JIAO Zhigang,LI Xiaojie,et al. Critical penetration velocity of prefabricated fragment in penetrating homogeneous armor steel plate[J]. Explosion and Shock Waves,2018,38(1):183-190.(in Chinese)
[17]高润芳,韩峰,马晓青,等. 几种钨合金破片垂直侵彻装甲钢板极限穿透速度研究[J]. 弹箭与制导学报,2005(4):59-61.
GAO Runfang,HAN Feng,MA Xiaoqing,et al. Investigation of tungsten fragments of different shape penetrating armour plate[J]. Journal of Projectiles,Rockets,Missiles and Guidance,2005(4):59-61.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2022-04-06
作者简介:程玉(1998-),男,硕士研究生,研究方向为终点毁伤。E-mail:2746460677@qq.com。
通信作者:陈智刚(1963-),男,教授,博士,研究方向为终点毁伤。E-mail:cyc@nuc.edu.cn。
更新日期/Last Update: 2022-12-30