[1]辛壮壮,张向东,江睿毅,等.弹头角速度与侵彻倾角对铝合金薄板损伤分析[J].弹道学报,2022,34(04):23-29.[doi:10.12115/j.issn.1004-499X(2022)04-004]
 XIN Zhuangzhuang,ZHANG Xiangdong,JIANG Ruiyi,et al.Influence of Warhead Angular Velocity and Penetration Angle onDamage Performance of Aluminum Alloy Sheet[J].Journal Of Ballistics,2022,34(04):23-29.[doi:10.12115/j.issn.1004-499X(2022)04-004]
点击复制

弹头角速度与侵彻倾角对铝合金薄板损伤分析()
分享到:

《弹道学报》[ISSN:1004-499X/CN:32-1343/TJ]

卷:
34
期数:
2022年04期
页码:
23-29
栏目:
出版日期:
2022-12-31

文章信息/Info

Title:
Influence of Warhead Angular Velocity and Penetration Angle onDamage Performance of Aluminum Alloy Sheet
文章编号:
1004-499X(2022)04-0023-07
作者:
辛壮壮1张向东1江睿毅2汪海洋1马鸿泽1许 蔚1
1.昆明理工大学 建筑工程学院,云南 昆明 650500; 2.南京航空航天大学 航空学院,江苏 南京 210016
Author(s):
XIN Zhuangzhuang1ZHANG Xiangdong1JIANG Ruiyi2WANG Haiyang1MA Hongze1XU Wei1
1.Faculty of Architectural Engineering,Kunming University of Science and Technology,Kunming 650500,China; 2.School of Aeronautics,Nanjing University of Aeronautics and Astronautics,Nanjing 210016,China
关键词:
弹头角速度 铝合金薄板 侵彻倾角 冲击动力学 本构关系 损伤力学
Keywords:
warhead angular velocity aluminum alloy sheet penetration angle impact dynamics constitutive relation damage mechanics
分类号:
O334.3; TJ204
DOI:
10.12115/j.issn.1004-499X(2022)04-004
文献标志码:
A
摘要:
快凝耐热铝合金已广泛应用于水陆两栖装甲车与轻型装甲侦察车车身等结构,由于车身铝合金材质的薄弱部件易受子弹撞击,导致车身关键部位所受损伤与破坏问题较为严重,因此有必要对铝合金薄板被子弹击穿时的损伤特性开展研究。本文通过ABAQUS仿真平台建立铝合金薄板与子弹弹头的显式动力学模型,研究了7.62 mm与9 mm两种不同口径的子弹弹头侵彻倾角、弹头自身角速度等参数对高强度铝合金薄板的损伤特性。结果表明:在相同侵彻倾角与子弹初速与角速度的情况下,9 mm子弹弹头对铝合金薄板造成的损伤程度更大,使薄板受到更大冲击; 7.62 mm子弹弹头对铝合金薄板的侵彻力度更大,有更好的贯穿特性; 随着子弹角速度的增加,两种型号子弹弹头对铝合金薄板破坏程度先增大后减小,角速度为2 000 rad/s时达到临界值; 侵彻倾角影响矩形模板破坏程度,但该影响存在临界值,到达临界值前,子弹穿透能力较小; 到达临界值后,继续增大倾角不再增大穿透能力; 同时随着倾角的增大,9 mm子弹弹头对铝合金薄板生成的动能总体均先增大后减小,倾角为45°时对矩形模板产生的动能最大。
Abstract:
Rapid solidification heat-resistant aluminum alloy has been widely used in amphibious armored vehicles,light armored reconnaissance vehicles and other structures. Since the weak parts of the aluminum alloy body are vulnerable to bullet impact,leading to serious damage and destruction of key parts of the body,it is necessary to study the damage characteristics of aluminum alloy sheet when it is punctured by bullet. In this paper,the explicit dynamic models of aluminum alloy sheet and bullet head were established through ABAQUS simulation platform,and the impact of angular velocity and penetration angle of 7.62 mm and 9 mm bullets on the damage characteristics of high-strength aluminum alloy sheet was studied. The results show that under the same penetration angle,initial velocity and angular velocity of the bullet,the damage of the aluminum alloy sheet caused by the 9 mm bullet is greater,and the sheet is more impacted. The 7.62 mm bullet penetrates the aluminum alloy sheet with greater force and better penetration characteristics. With the increase of the bullet angular velocity,the damage degree of the two types of bullet heads to the aluminum alloy sheet first increases and then decreases,reaching the critical value at 2 000 rad/s. The penetration angle affects the damage degree of the rectangular template,but there is a critical value for this effect. Before reaching the critical value,the penetration ability of the bullet is small. After reaching the critical value,the penetration capacity will not increase with the increase of the inclination angle. At the same time,with the increase of the inclination,the kinetic energy generated by the 9 mm warhead on the aluminum alloy sheet generally increases first and then decreases,and the kinetic energy generated on the rectangular template is the largest when the inclination is 45°.

参考文献/References:

[1] 杜忠华,赵国志. 子弹垂直侵彻陶瓷铝合金靶板的理论分析模型[J]. 兵工学报,2001,22(4):477-480.
DU Zhonghua,ZHAO Guozhi. An analytical model for a bullet penetrating normally on a target of ceramic/aluminum alloy[J]Acta Armamentarii,2001,22(4):477-480.(in Chinese)
[2]薛建锋. 弹体侵彻与贯穿混凝土靶的效应研究[D]. 南京:南京理工大学,2016.
XUE Jianfeng. Research on the performance of projectile penetration and perforation into concrete target[D]. Nanjing:Nanjing University of Science and Technology,2016.(in Chinese)
[3]王玺,何丽,杭立杰,等,特种车辆轻武器毁伤效应试验研究[J]. 兵器装备工程学报,2021,42(2):108-111.
WANG Xi,HE Li,HANG Lijie,et al. Experimental study on damage effect of special vehicle light weapons[J]. Journal of Ordnance Equipment Engineering,2021,42(2):108-111.(in Chinese)
[4]肖玲,宋卫东. 在圆锥头弹体正冲击下薄壁金属圆板破裂模式的实验研究[J]. 实验力学,2002,17(1):96-100.
XIAO L,SONG W. Rupture of thin metal plates under normal impact of different conical-nosed missiles,an experiments[J]. Journal of Experimental Mechanics,2002,17(1):96-100.(in Chinese)
[5]JIMENEZ-GONZALEZ J I,SANMIGUEL-ROJAS E,SEVILLA A,et al. Laminar flow past a spinning bullet-shaped body at moderate angular velocities[J]. Journal of Fluids and Structures,2014,43:200-219.
[6]DUSMANTA K J,SHIVCHARAN K. Simulation of bullet penetration using finite element method[C]. 1st International Conference on Range Technology. Balasol:ICORT,2019.
[7]裴东兴,王文武,崔春生. 利用转速测试弹丸炮口速度的方法研究[J]. 兵工学报,2013,34(1):125-128.
PEI Dongxing,WANG Wenwu,CUI Chunsheng. Study on projectile muzzle velocity measurement based on rotational speed[J]. Acta Armamentarii,2013,34(1):125-128.(in Chinese)
[8]尚剑宇,张晓明,黄建林,等. 常规弹药转速测量方法仿真研究[J]. 弹箭与制导学报,2012,32(4):99-102.
SHANG Jianyu,ZHANG Xiaoming,HUANG Jianlin,et al. The simulation on rotating speed measurement method of conventional ammunition[J]Journal of Projectiles,Rockets,Missiles and Guidance,2012,32(4):99-102.(in Chinese)
[9]KHAIRE N,TIWARI G. Ballistic response of hemispherical sandwich shell structure a gainst ogive nosed projectile[J]. Thin-Walled Structures,2020,154:106869.
[10]陈刚,陈小伟,陈忠富,等. A3钢钝头弹撞击45钢板破坏模式的数值分析[J]. 爆炸与冲击,2007,27(5):390-397.
CHEN Gang,CHEN Xiaowei,CHEN Zhongfu,et al. Simulations of A3 steel blunt projectile simpacting 45 steel plates[J]. Explosion and Shock Waves,2007,27(5):390-397.(in Chinese)
[11]古兴瑾,许希武. 不同形状弹体高速冲击下复合材料层板损伤分析[J]. 工程力学,2013,30(1):432-440.
GU Xingjing,Xu Xiwu. Analysis of damage in composite aminates under high velocity impact by projectiles of diferent shapes[J]. Engineering Mechanics,2013,30(1):432-440.(in Chinese)
[12]LIU H B,LIU J,DING Y Z,et al. Modelling the effect of projectile hardness on the impact response of a woven carbon-fibre reinforced thermoplastic-matrix composite[J]. International Journal of Lightweight Materials and Manufacture,2020,3(4):403-415.
[13]李晓彬,方科,沈亚娟. 旋翼复合材料桨叶弹击损伤的有限元仿真分析[J]. 复合材料科学与工程,2020(1):33-38.
LI Xiaobin,FANG Ke,SHEN Yajuan. Finite element simulation analysis of rotor composite blade damage under bullet impact[J]. Composites Science and Engineering,2020(1):33-38.(in1Chinese)
[14]朱金荣. 直升机结构战场损伤及修复[C]//2011航空维修理论研究及技术发展学术交流会论文集. 南京:江苏省航空航天学会,2011:19-22.
ZHU Jinrong. Battlefield damage and repair of helicopter structures[C]//Proceedings of the 2011 Aviation Maintenance Theory Research and Technology Development Symposium. Nanjing:Jiangsu Institute of Aeronautics and Astronautics,2011:19-22.
[15]邓云飞,张永,曾宪智,等. 6061-T651铝合金动态力学性能及断裂准则修正[J]机械工程学报,2020,56(18):81-91.
DENG Yunfei,ZHANG Yong,ZENG Xianzhi,et al. Dynamic mechanical properties and modification of fracture criteria of 6061-T651 aluminum alloy[J]. Journal of Mechanical Engineering,2020,56(18):81-91.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2022-04-01
作者简介:辛壮壮(1999-),男,硕士研究生,研究方向为冲击动力学、生物流体力学。E-mail:1010454790@qq.com。
通信作者:许蔚(1976-),教授,博导,研究方向为实验固体力学、复合材料力学。E-mail:13354909706@163.com。
更新日期/Last Update: 2022-12-30