[1]向 熙,封 锋,陈 超,等.基于流-固-热耦合的超声速弹箭尾翼强度分析[J].弹道学报,2022,34(04):98-104.[doi:10.12115/j.issn.1004-499X(2022)04-014]
 XIANG Xi,FENG Feng,CHEN Chao,et al.Strength Analysis of Supersonic Rocket Projectile’s TailBased on Fluid-solid-thermal Coupling[J].Journal Of Ballistics,2022,34(04):98-104.[doi:10.12115/j.issn.1004-499X(2022)04-014]
点击复制

基于流-固-热耦合的超声速弹箭尾翼强度分析()
分享到:

《弹道学报》[ISSN:1004-499X/CN:32-1343/TJ]

卷:
34
期数:
2022年04期
页码:
98-104
栏目:
出版日期:
2022-12-31

文章信息/Info

Title:
Strength Analysis of Supersonic Rocket Projectile’s TailBased on Fluid-solid-thermal Coupling
文章编号:
1004-499X(2022)04-0098-07
作者:
向 熙1封 锋1陈 超2王明亮1罗 飞1
1.南京理工大学 机械工程学院,江苏 南京 210094; 2.安徽神剑科技股份有限公司,安徽 合肥 230601
Author(s):
XIANG Xi1FENG Feng1CHEN Chao2WANG Mingliang1LUO Fei1
1.School of Mechanical Engineering,Nanjing University of Science and Technology,Nanjing 210094,China; 2.Anhui Shenjian Technology Co.,Ltd,Hefei 230601,China
关键词:
弹箭尾翼 流-固-热耦合 变形 应力 强度分析
Keywords:
rocket tail fluid solid thermal coupling deformation stress strength analysis
分类号:
TJ714
DOI:
10.12115/j.issn.1004-499X(2022)04-014
文献标志码:
A
摘要:
为评估超声速飞行时弹箭尾翼的安全性,结合弹道曲线,计算了某型火箭弹在不同马赫数下飞行时的稳态外流场,并研究了2 s内的瞬态传热。根据传热计算的结果调整了材料的力学性能参数,进而计算了在不同飞行马赫数下,弹箭尾翼受空气动力作用产生的总变形和等效应力。结果表明:弹箭以高马赫数飞行时,前缘翼尖温度最高,且高温由该位置向内部迅速传递,马赫数越大,升温越剧烈,导致翼片前缘出现烧蚀,因此高速飞行的弹箭应对尾翼等结构进行热防护处理。高温会使材料性能下降,在气动热和气动压力共同作用下,翼片会产生较大变形,且应力可能超过许用应力。最大变形量出现在前缘翼尖,最大应力出现在翼根靠近前缘处,且都随飞行马赫数增加而增大。
Abstract:
To evaluate the safety of the rocket tail under supersonic condition,the steady-state flow field of a rocket with different Mach numbers was numerically simutated on the consideration of the ballistic curve. Then the transient heat transfer of the rocket tail in 2 s was calculated. According to the simulation results,the material mechanical property parameters of the tail was adjusted. And the total deformation and equivalent stress of the rocket tail caused by aerodynamic force in different Mach numbers was simulated. The results show that temperature of the leading edge tip is the highest on the whole tail at high Mach number conditions,and the high temperature will transmit into the within rapidly. The higher the flight Mach number is,the higher temperature of the tail is,which leading to the ablation occurs at the leading edge of the tail. Therefore,thermal protection treatment should be considered on the rocket tail under high Mach number condilion since high temperature will degrade the properties of tail’s material. Large deformation will occur on the tail and the equivalent stress may exceed allowable value under the combined action of aerodynamic heat and force. The maximum deformation which occurs at the leading edge tip and the maximum equivalent stress which occurs at the tail root near the leading edge,increase with the increase of Mach number.

参考文献/References:

[1] 柯金友,韩树楷. 火箭弹构造与作用[M]. 北京:北京理工大学出版社,1994.
KE Jinyou,HAN Shukai. Structure and function of rocket projectile[M]. Beijing:Beijing Institute of Technology Press,1994.(in Chinese)
[2]季宗德,周长省,丘光申. 火箭弹设计理论[M]. 北京:兵器工业出版社,1995.
JI Zongde,Zhou Changsheng,QIU Guangshen. Rocket projectile design theory[M]. Beijing:Ordnance Industry Press,1995.(in Chinese)
[3]OGNJANOVIC O V,MAKSIMOVIC S M,VIDANOVIC N D,et al. Numerical aerodynamic-thermal-structural analyses of missile fin configuration during supersonic flight conditions[J]. Thermal Science,2017,21(6):3037-3049.
[4]?ZK?KDEMIR E. Investigation of the flexible missile fins under aerothermal loadings[D]. Ankara:Middle East Technical University,2018.
[5]ZHAO F,SU L,ZHU R,et al. Study of linear ablative rate of D6AC steel wing used on supersonic missile[J]. Thermal Science,2019,23(6):4107-4116.
[6]王鸿丽,李鹏永. 导弹发射系统发射内弹道热-流耦合仿真研究[J]. 弹道学报,2021,33(2):72-77.
WANG Hongli,LI Pengyong. Study on heat flow coupling simulation of missile launch system[J]. Journal of Ballistics,2021,33(2):72-77.(in Chinese)
[7]姚怀博. 柔固耦合高超声速飞行器热流固多场耦合计算研究[D]. 哈尔滨:哈尔滨工业大学,2018.
YAO Huaibo. Study on thermal fluid solid multi field coupling calculation of flexible solid hypersonic vehicle[D]. Harbin:Harbin Institute of Technology,2018.(in Chinese)
[8]张帅,张强波,董江,等. 考虑流固耦合效应的航空发动机风扇叶片应力数值模拟与试验测量研究[J]. 推进技术,2022,43(2):200175.
ZHANG Shuai,ZHANG Qiangbo,DONG Jiang,et al. Numerical simulation and experimental measurement of aeroengine fan blade stress considering fluid structure coupling effect[J]. Journal of Propulsion Technology,2022,43(2):200175.(in Chinese)
[9]宋君才,许进升. 固体火箭发动机Ⅱ脉冲点火过程流固耦合分析[J]. 弹道学报,2021,33(3):70-74.
SONG Juncai,XU Jinsheng. Fluid solid coupling analysis of Ⅱ pulse ignition process in solid rocket motor[J]. Journal of Ballistics,2021,33(3):70-74.(in Chinese)
[10]郭小农,熊哲,蒋首超. 铝合金结构的高温性能研究现状简述[J]. 钢结构工程研究,2014增刊:6-14.
GUO Xiaonong,XIONG Zhe,JIANG Shouchao. Research status of high temperature properties of aluminum alloy structures[J]. Journal of Steel Construction(Supplement),2014:6-14.(in Chinese)
[11]彭航,蒋首超,赵媛媛. 建筑用6061-T6系铝合金高温下力学性能试验研究[J]. 土木工程学报,2009,42(7):46-49.
PENG Hang,JIANG Shouchao,ZHAO Yuanyuan. Experimental study on mechanical properties at high temperature of 6061-T6 series aluminum alloy for building[J]. China Civil Engineering Journal,2009,42(7):46-49.(in Chinese)
[12]王新月. 气体动力学基础[M]. 西安:西北工业大学出版社,2006.
WANG Xinyue. Fundamentals of gas dynamics[M]. Xi’an:Northwestern Polytechnical University Press,2006.(in Chinese)
[13]宋学官,蔡林,张华. ANSYS流固耦合分析与工程实例[M]. 北京:中国水利水电出版社,2012.
SONG Xueguan,CAI Lin,ZHANG Hua. ANSYS fluid structure coupling analysis and engineering examples[M]. Beijing:China Water Power Press,2012.(in Chinese)
[14]刘巍,龚宪生,张连凯. 基于流固耦合的闭式离心叶轮结构强度分析[J]. 机械工程师,2018(9):94-96.
LIU Wei,GONG Xiansheng,ZHANG Liankai. Structural strength analysis of closed centrifugal impeller based on fluid structure coupling[J]. Mechanical Engineering,2018(9):94-96.(in Chinese)
[15]徐芝纶. 弹性力学(上册)[M]. 北京:高等教育出版社,2006.
XU Zhilun. Elasticity(Volume I)[M]. Beijing:Higher Education Press,2006.(in Chinese)
[16]袁泽建,崔晋. 防护技术在某型火箭弹中的应用[C]//中国兵工学会火箭导弹专业委员会第二十六次学术年会论文集. 衡阳:中国兵工学会,2021.
YUAN Zejian,CUI Jin. Application of protection technology in a certain type of rocket projectile[C]//The 26th Annual Academic Meeting of the rocket and missile Professional Committee of China Ordnance Industry Society. Hengyang:China Ordnance Society,2021.(in Chinese)

备注/Memo

备注/Memo:
收稿日期:2021-09-18
作者简介:向熙(1997- ),男,硕士研究生,研究方向为火箭弹气动特性。E-mail:xiangxi@njust.edu.cn。
通信作者:封锋(1982- ),男,副教授,研究方向为飞行器设计。E-mail:nust203@yahoo.com。
更新日期/Last Update: 2022-12-30